Determining factors of thermoelectric properties of semiconductor nanowires
نویسندگان
چکیده
It is widely accepted that low dimensionality of semiconductor heterostructures and nanostructures can significantly improve their thermoelectric efficiency. However, what is less well understood is the precise role of electronic and lattice transport coefficients in the improvement. We differentiate and analyze the electronic and lattice contributions to the enhancement by using a nearly parameter-free theory of the thermoelectric properties of semiconductor nanowires. By combining molecular dynamics, density functional theory, and Boltzmann transport theory methods, we provide a complete picture for the competing factors of thermoelectric figure of merit. As an example, we study the thermoelectric properties of ZnO and Si nanowires. We find that the figure of merit can be increased as much as 30 times in 8-Å-diameter ZnO nanowires and 20 times in 12-Å-diameter Si nanowires, compared with the bulk. Decoupling of thermoelectric contributions reveals that the reduction of lattice thermal conductivity is the predominant factor in the improvement of thermoelectric properties in nanowires. While the lattice contribution to the efficiency enhancement consistently becomes larger with decreasing size of nanowires, the electronic contribution is relatively small in ZnO and disadvantageous in Si.
منابع مشابه
Full-Band Calculations of Thermoelectric Properties of Si Nanowires and Thin Layers
Low-dimensional semiconductors are considered promising candidates for thermoelectric applications with enhanced performance because of a drastic reduction in their thermal conductivity, κl, and possibilities of enhanced power factors. This is also the case for traditionally poor thermoelectric materials such as silicon. This work presents atomistic simulations for the electronic, thermal, and ...
متن کاملThermoelectric properties of Bi1-xSbx nanowires and lead salt superlattice nanowires
This thesis involves an extensive experimental and theoretical study of the thermoelectric-related transport properties of Bii_2Sb. nanowires, and presents a theoretical framework for predicting the electrical properties of superlattice nanowires. A template-assisted fabrication scheme is employed to synthesize Bi-based nanowires by pressure injecting liquid metal alloys into the hexagonally pa...
متن کاملField-effect modulation of Seebeck coefficient in single PbSe nanowires.
In this Letter, we present a novel strategy to control the thermoelectric properties of individual PbSe nanowires. Using a field-effect gated device, we were able to tune the Seebeck coefficient of single PbSe nanowires from 64 to 193 microV x K(-1). This direct electrical field control of sigma and S suggests a powerful strategy for optimizing ZT in thermoelectric devices. These results repres...
متن کاملAb-initio study of Electronic, Optical, Dynamic and Thermoelectric properties of CuSbX2 (X=S,Se) compounds
Abstract: In this work we investigate the electronic, optical, dynamic and thermoelectric properties of ternary copper-based Chalcogenides CuSbX2 (X= S, Se) compounds. Calculations are based on density functional theory and the semi-classical Boltzmann theory. Computations have been carried out by using Quantum-Espresso (PWSCF) package and ab-initio pseudo-potential technique. To estimate the e...
متن کاملGated Si nanowires for large thermoelectric power factors
We investigate the effect of electrostatic gating on the thermoelectric power factor of p-type Si nanowires (NWs) of up to 20nm in diameter in the [100], [110] and [111] crystallographic transport orientations. We use atomistic tight-binding simulations for the calculation of the NW electronic structure, coupled to linearized Boltzmann transport equation for the calculation of the thermoelectri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011